

ACHIEVING SOFTWARE EXCELLENCE

Version 8.0 – October 4, 2016

Abstract

As of the year 2016 software applications are the main operational component of every

major business and government organization in the world. But software quality is still

not good for a majority of these applications. Software schedules and costs are both

frequently much larger than planned. Cyber-attacks are become more frequent and more

serious.

This study discusses the proven methods and results for achieving software excellence.

The paper also provides quantification of what the term “excellence” means for both

quality and productivity. Formal sizing and estimating using parametric estimation tools,

excellent progress and quality tracking also using special tools, and a comprehensive

software quality program can lead to shorter schedules, lower costs, and higher quality at

the same time.

Capers Jones, VP and CTO, Namcook Analytics LLC

Email: Capers.Jones3@gmail.com

Web: www.Namcook.com

Copyright 2016 by Capers Jones.

All Rights Reserved.

mailto:Capers.Jones3@gmail.com
http://www.namcook.com/

2

INTRODUCTION

Software is the main operating tool of business and government in 2016. But software

quality remains marginal; software schedules and costs remained much larger than

desirable or planned. Cancelled projects are about 35% in the 10,000 function point size

range and about 5% of software outsource agreements end up in court in litigation.

Cyber-attacks are increasing in numbers and severity. This short study identifies the

major methods for bringing software under control and achieving excellent results.

The first topic of importance is to show the quantitative differences between excellent,

average, and poor software projects in quantified form. Table 1 shows the essential

differences between software excellence, average, and unacceptably poor results for a

mid-sized project of 1,000 function points or about 53,000 Java statements.

The data comes from benchmarks performed by Namcook Analytics LLC. These were

covered by non-disclosure agreements so specific companies are not shown. However

the “excellent” column came from technology and medical device companies; the

average from insurance and manufacturing; and the poor column from state and local

governments:

Table 1: Comparisons of Excellent, Average, and Poor Software Results

 Topics Excellent Average Poor

 Monthly Costs

 (Salary + overhead) $10,000 $10,000 $10,000

 Size at Delivery

Size in function points

1,000

1,000

1,000

Programming language Java Java Java

Language Levels 6.25 6.00 5.75

Source statements per funct. point 51.20 53.33 55.65

Size in logical code statements 51,200 53,333 55,652

Size in KLOC 51.20 53.33 55.65

Certified reuse percent 20.00% 10.00% 5.00%

 Quality

 Defect potentials 2,818 3,467 4,266

Defects per function point 2.82 3.47 4.27

Defects per KLOC 55.05 65.01 76.65

 Defect removal efficiency (DRE) 99.00% 90.00% 83.00%

Delivered defects 28 347 725

High-severity defects 4 59 145

3

Security vulnerabilities 2 31 88

Delivered per function point 0.03 0.35 0.73

Delivered per KLOC 0.55 6.50 13.03

 Key Quality Control Methods

 Formal estimates of defects Yes No No

Formal inspections of deliverables Yes No No

Static analysis of all code Yes Yes No

Formal test case design Yes Yes No

Testing by certified test personnel Yes No No

Mathematical test case design Yes No No

 Project Parameter Results

 Schedule in calendar months 12.02 13.80 18.20

Technical staff + management 6.25 6.67 7.69

Effort in staff months 75.14 92.03 139.98

Effort in staff hours

9,919

12,147

18,477

Costs in Dollars $751,415 $920,256 $1,399,770

Cost per function point $751.42 $920.26 $1,399.77

Cost per KLOC $14,676 $17,255 $25,152

 Productivity Rates

 Function points per staff month 13.31 10.87 7.14

Work hours per function point 9.92 12.15 18.48

Lines of code per staff month 681 580 398

 Cost Drivers

 Bug repairs 25.00% 40.00% 45.00%

Paper documents 20.00% 17.00% 20.00%

Code development 35.00% 18.00% 13.00%

Meetings 8.00% 13.00% 10.00%

Management 12.00% 12.00% 12.00%

Total 100.00% 100.00% 100.00%

 Methods, Tools, Practices

 Development Methods TSP/PSP Agile Waterfall

Requirements Methods JAD Embedded Interview

CMMI Levels 5 3 1

Work hours per month 132 132 132

Unpaid overtime 0 0 0

Team experience Experienced Average Inexperienced

Formal risk analysis Yes Yes No

4

Formal quality analysis Yes No No

Formal change control Yes Yes No

Formal sizing of project Yes Yes No

Formal reuse analysis Yes No No

Parametric estimation tools Yes No No

Inspections of key materials Yes No No

Static analysis of all code Yes Yes No

Formal test case design Yes No No

Certified test personnel Yes No No

Accurate status reporting Yes Yes No

Accurate defect tracking Yes No No

More than 15% certified reuse Yes Maybe No

Low cyclomatic complexity Yes Maybe No

Test coverage > 95% Yes Maybe No

As stated the data in table 1 comes from the author’s clients, which consist of about 750

companies of whom 150 are Fortune 500 companies. About 40 government and military

organizations are also clients, but the good and average columns in table 1 are based on

corporate results rather than government results. State and local governments provided

data for the poor quality column.

(Federal Government and defense software tend to have large overhead costs and

extensive status reporting that are not found in the civilian sector. Some big defense

projects have produced so much paperwork that there were over 1,400 English words for

every Ada statement, and the words cost more than the source code.)

(Note that the data in this report was produced using the Namcook Analytics Software

Risk Master™ (SRM) tool. SRM can operate as an estimating tool prior to requirements

or as a benchmark measurement tool after deployment.)

At this point it is useful to discuss and explain the main differences between the best,

average, and poor results.

5

Software Sizing, Estimating, and Project Tracking Differences

High-quality projects with excellent results all use formal parametric estimating tools,

perform formal sizing before starting, and have accurate status and cost tracking during

development.

A comparative study by the author of accuracy differences between manual estimates and

parametric estimates showed that the manual estimates averaged about 34% optimistic

for schedules and costs.

Worse, manual estimating errors increased with application size. Below 250 function

points manual and parametric estimates were both within 5%. Above 10,000 function

points manual estimates were optimistic by almost 40% while parametric estimates were

often within 10%. Overall parametric estimates usually differed by less than 10% from

actual results for schedules and costs, sometimes less than 5%, and were almost never

optimistic.

The parametric estimation tools included COCOMO, Excelerator, KnowledgePlan,

SEER, SLIM, Software Risk Master, and TruePrice. All of these parametric tools were

more accurate than manual cost and schedule estimates for all size ranges and application

types.

High-quality projects also track results with high accuracy for progress, schedules,

defects, and cost accumulation. Some excellent projects use specialized tracking tools

such as Computer Aid’s Automated Project Office (APO) which was built to track

software projects. Others use general tools such as Microsoft Project which supports

many kinds of projects in addition to software.

Average projects with average results sometimes used parametric estimates but more

often use manual estimates. However some of the average projects did utilize estimating

specialists, who are more accurate than untrained project managers.

Project tracking for average projects tends to be informal and use general-purpose tools

such as Excel rather than specialized software tracking tools such as APO, Jira, Asana

and others. Average tracking also “leaks” and tends to omit topics such as unpaid

overtime and project management.

Poor quality projects almost always use manual estimates. Tracking of progress is so

bad that problems are sometimes concealed rather than revealed. Poor quality cost

tracking has major gaps and omits over 50% of total project costs. The most common

omissions are unpaid overtime, project managers, and the work of part-time specialists

such as business analysts, technical writers, and software quality assurance.

Quality tracking is embarrassingly bad and omits all bugs found before testing via static

analysis or reviews, and usually omits bugs found during unit testing. Some poor-quality

companies and government organizations don’t track quality at all. Many others don’t

6

track until late testing or deployment.

Software Quality Differences for Best, Average, and Poor Projects

Software quality is the major point of differentiation between excellent results, average

results, and poor results.

While software executives demand high productivity and short schedules, the vast

majority do not understand how to achieve them. Bypassing quality control does not

speed projects up: it slows them down.

The number one reason for enormous schedule slips noted in breach of contract litigation

where the author has been an expert witness is starting testing with so many bugs that test

schedules are at least double their planned duration.

The major point of this article is: High quality using a synergistic combination of defect

prevention, pre-test inspections and static analysis combined with formal testing is fast

and cheap.

Poor quality is expensive, slow, and unfortunately far too common. Because most

companies do not know how to achieve high quality, poor quality is the norm and at least

twice as common as high quality.

High quality does not come from testing alone. It requires defect prevention such as Joint

Application Design (JAD), quality function deployment (QFD) or embedded users; pre-

test inspections and static analysis; and of course formal test case development combined

with certified test personnel. New methods of test case development based on cause-

effect graphs and design of experiments are quite a step forward.

The defect potential information in table 1 includes defects from five origins:

requirements defects, design defects, code defects, document defects, and “bad fixes” or

new defects accidentally included in defect repairs. The approximate distribution among

these five sources is:

1. Requirements defects 15%

2. Design defects 30%

3. Code defects 40%

4. Document defects 8%

5. Bad fixes 7%

6. Total Defects 100%

Note that a “bad fix” is a bug in a bug repair. These can sometimes top 25% of bug

repairs for modules with high cyclomatic complexity.

However the distribution of defect origins varies widely based on the novelty of the

application, the experience of the clients and the development team, the methodologies

7

used, and programming languages. Certified reusable material also has an impact on

software defect volumes and origins.

Table 2 shows approximate U.S. ranges for defect potentials based on a sample of 1,500

software projects that include systems software, web projects, embedded software, and

information technology projects that range from 100 to 100,000 function points:

Table 2: Defect Potentials for 1,000 Projects

 Defect

 Potentials Projects Percent

 < 1.00

5 0.50%

 2 to 1

35 3.50%

 3 to 2

120 12.00%

 4 to 3

425 42.50%

 5 to 4

350 35.00%

 > 5.00

65 6.50%

 Totals

 1,000 100.00%

It is unfortunate that buggy software projects outnumber low-defect projects by a

considerable margin.

Because the costs of finding and fixing bugs have been the #1 cost driver for the entire

software industry for more than 50 years, the most important difference between

excellent and mediocre results are in the areas of defect prevention, pre-test defect

removal, and testing.

All three examples are assumed to use the same set of test stages, including:

1. Unit test

2. Function test

3. Regression test

4. Component test

5. Performance test

6. System test

7. Acceptance test

The overall defect removal efficiency (DRE) levels of these 7 test stages range from

8

below 80% for the worst case up to about 95% for the best case.

Note that the seven test stages shown above are generic and used on a majority of

software applications. Additional forms of testing may also be used, and can be added to

SRM for specific clients and specific projects:

1. Independent testing (mainly government and military software)

2. Usability testing (mainly software with complex user controls)

3. Performance testing (mainly real-time software)

4. Security testing

5. Limits testing

6. Supply-chain testing

7. Nationalization testing (for international projects)

Testing alone is not sufficient to top 95% in defect removal efficiency (DRE). Pre-test

inspections and static analysis are needed to approach or exceed the 99% range of the

best case. Also requirements models and “quality-strong” development methods such as

team software process (TSP) need to be part of the quality equation.

Excellent quality control

Excellent projects have rigorous quality control methods that include formal estimation

of quality before starting, full defect measurement and tracking during development, and

a full suite of defect prevention, pre-test removal and test stages. The combination of low

defect potentials and high defect removal efficiency (DRE) is what software excellence is

all about.

The most common companies that are excellent in quality control are usually the

companies that build complex physical devices such as computers, aircraft, embedded

engine components, medical devices, and telephone switching systems. Without

excellence in quality these physical devices will not operate successfully. Worse, failure

can lead to litigation and even criminal charges. Therefore all companies that use

software to control complex physical machinery tend to be excellent in software quality.

Examples of organizations noted as excellent software quality in alphabetical order

include Advanced Bionics, Apple, AT&T, Boeing, Ford for engine controls, General

Electric for jet engines, Hewlett Packard for embedded software, IBM for systems

software, Motorola for electronics, NASA for space controls, the Navy for surface

weapons, Raytheon, and Siemens.

Companies and projects with excellent quality control tend to have low levels of code

cyclomatic complexity and high test coverage; i.e. test cases cover > 95% of paths and

risk areas.

These companies also measure quality well and all know their defect removal efficiency

9

(DRE) levels. (Any company that does not measure and know their DRE is probably

below 85% in DRE.)

Excellent quality control has defect removal efficiency levels (DRE) between about 97%

for large systems in the 10,000 function point size range and about 99.6% for small

projects < 1,000 function points in size.

A DRE of 100% is theoretically possible but is extremely rare. The author has only

noted DRE of 100% in 10 projects out of a total of about 25,000 projects examined. As it

happens the projects with 100% DRE were all compilers and assemblers built by IBM

and using > 85% certified reusable materials. The teams were all experts in compilation

technology and of course a full suite of pre-test defect removal and test stages were used

as well.

Average quality control

In today’s world agile is the new average. Agile development has proven to be effective

for smaller applications below 1,000 function points in size. Agile does not scale up well

and is not a top method for quality. Agile is weak in quality measurements and does not

normally use inspections, which have the highest defect removal efficiency (DRE) of any

known form of defect removal. Disciplined Agile Development (DAD) can be used

successfully on large systems where vanilla agile/scrum is not effective. Inspections top

85% in DRE and also raise testing DRE levels. Among the author’s clients that use

Agile the average value for defect removal efficiency is about 92% to 94%. This is

certainly better than the 85% to 90% industry average for waterfall projects, but not up to

the 99% actually needed to achieve optimal results.

Some but not all agile projects use “pair programming” in which two programmers share

an office and a work station and take turns coding while the other watches and

“navigates.” Pair programming is very expensive but only benefits quality by about 15%

compared to single programmers. Pair programming is much less effective in finding

bugs than formal inspections, which usually bring 3 to 5 personnel together to seek out

bugs using formal methods.

Agile is a definite improvement for quality compared to waterfall development, but is not

as effective as the quality-strong methods of team software process (TSP) and the rational

unified process (RUP) for larger applications > 1000 function points. An average agile

project among the author’s clients is about 275 function points. Disciplined agile

development (DAD) is a good choice for larger information software applications.

Average projects usually do not know defects by origin, and do not measure defect

removal efficiency until testing starts; i.e. requirements and design defects are under

reported and sometimes invisible.

A recent advance in software quality control now frequently used by average as well as

advanced organizations is that of static analysis. Static analysis tools can find about 55%

10

of code defects, which is much higher than most forms of testing.

Many test stages such as unit test, function test, regression test, etc. are only about 35%

efficient in finding code bugs, or find one bug out of three. This explains why 6 to 10

separate kinds of testing are needed.

The kinds of companies and projects that are “average” would include internal software

built by hundreds of banks, insurance companies, retail and wholesale companies, and

many government agencies at federal, state, and municipal levels.

Average quality control has defect removal efficiency levels (DRE) from about 85% for

large systems up to 97% for small and simple projects.

Poor Quality Control

Poor quality control is characterized by weak defect prevention and almost a total

omission of pre-test defect removal methods such as static analysis and formal

inspections. Poor quality control is also characterized by inept and inaccurate quality

measures which ignore front-end defects in requirements and design. There are also gaps

in measuring code defects. For example most companies with poor quality control have

no idea how many test cases might be needed or how efficient various kinds of test stages

are.

Companies or government groups with poor quality control also fail to perform any kind

of up-front quality predictions so they jump into development without a clue as to how

many bugs are likely to occur and what are the best methods for preventing or removing

these bugs.

One of the main reasons for the long schedules and high costs associated with poor

quality is the fact that so many bugs are found when testing starts that the test interval

stretches out to two or three times longer than planned.

Some of the kinds of software that are noted for poor quality control include the

Obamacare web site, municipal software for property tax assessments, and software for

programmed stock trading, which has caused several massive stock crashes.

Poor quality control is often below 85% in defect removal efficiency (DRE) levels. In

fact for canceled projects or those that end up in litigation for poor quality, the DRE

levels may drop below 80%, which is low enough to be considered professional

malpractice. In litigation where the author has been an expert witness DRE levels in the

low 80% range have been the unfortunate norm.

Table 3 shows the ranges in defect removal efficiency (DRE) noted from a sample of

1,000 software projects. The sample included systems and embedded software, web

projects, cloud projects, information technology projects, and also defense and

commercial packages.

11

Table 3: Distribution of DRE for 1,000 Projects

 DRE Projects Percent

 > 99.00% 10 1.00%

 95%-99% 120 12.00%

 90%-94% 250 25.00%

 85%-89% 475 47.50%

 80%-85% 125 12.50%

 < 80.00% 20 2.00%

 Totals 1,000 100.00%

As can be seen high DRE does not occur often. This is unfortunate because projects that

are above 95.00% in DRE have shorter schedules and lower costs than projects below

85.00% in DRE. The software industry does not measure either quality or productivity

well enough to know this.

However the most important economic fact about high quality is: projects > 97% in

DRE have shorter schedules and lower costs than projects < 90% in DRE. This is

because projects that are low in DRE have test schedules that are at least twice as long as

projects with high DRE due to omission of pre-test inspections and static analysis!

Reuse of Certified Materials for Software Projects

So long as software applications are custom designed and coded by hand, software will

remain a labor-intensive craft rather than a modern professional activity. Manual

software development even with excellent methodologies cannot be much more than 15%

better than average development due to the intrinsic limits in human performance and

legal limits in the number of hours that can be worked without fatigue.

The best long-term strategy for achieving consistent excellence at high speed would be to

eliminate manual design and coding in favor of construction from certified reusable

components.

It is important to realize that software reuse encompasses many deliverables and not just

source code. A full suite of reusable software components would include at least the

following 10 items:

12

Reusable Software Artifacts Circa 2016

1. Reusable requirements

2. Reusable architecture

3. Reusable design

4. Reusable code

5. Reusable project plans and estimates

6. Reusable test plans

7. Reusable test scripts

8. Reusable test cases

9. Reusable user manuals

10. Reusable training materials

These materials need to be certified to near zero-defect levels of quality before reuse

becomes safe and economically viable. Reusing buggy materials is harmful and

expensive. This is why excellent quality control is the first stage in a successful reuse

program.

The need for being close to zero defects and formal certification adds about 20% to the

costs of constructing reusable artifacts, and about 30% to the schedules for construction.

However using certified reusable materials subtracts over 80% from the costs of

construction and can shorten schedules by more than 60%. The more times materials are

reused the greater their cumulative economic value.

One caution to readers: reusable artifacts may be treated as taxable assets by the Internal

Revenue Service. It is important to check this topic out with a tax attorney to be sure that

formal corporate reuse programs will not encounter unpleasant tax consequences.

The three samples in table 1 showed only moderate reuse typical for the start of 2016:

Excellent project > 25% certified reuse

Average project + - 10% certified reuse

Poor projects < 5% certified reuse

In the future it is technically possible to make large increases in the volumes of reusable

materials. By around 2025 we should be able to construct software applications with

perhaps 85% certified reusable materials. In fact some “mashup” projects already

achieve 85% reuse, but the reused materials are not certified and some may contain

significant bugs and security flaws.

Table 4 shows the productivity impact of increasing volumes of certified reusable

materials. Table 4 uses whole numbers and generic values to simplify the calculations:

13

Table 4: Productivity Gains from Software Reuse

 (Assumes 1,000 function points and 53,300 LOC)

 Reuse Months Function Work hours Lines of Project

Percent of staff Points per per function Code per Costs

effort month point month

0.00% 100 10.00 13.20

533 $1,000,000

10.00% 90 11.11 11.88

592 $900,000

20.00% 80 12.50 10.56

666 $800,000

30.00% 70 14.29 9.24

761 $700,000

40.00% 60 16.67 7.92

888 $600,000

50.00% 50 20.00 6.60

1,066 $500,000

60.00% 40 25.00 5.28

1,333 $400,000

70.00% 30 33.33 3.96

1,777 $300,000

80.00% 20 50.00 2.64

2,665 $200,000

90.00% 10 100.00 1.32

5,330 $100,000

100.00% 1 1,000.00 0.13

53,300 $10,000

Software reuse from certified components instead of custom design and hand coding is

the only known technique that can achieve order-of-magnitude improvements in software

productivity. True excellence in software engineering must derive from replacing costly

and error-prone manual work with construction from certified reusable components.

Because finding and fixing bugs is the major software cost driver, increasing volumes of

high-quality certified materials can convert software from an error-prone manual craft

into a very professional high-technology profession. Table 3 shows probable quality

gains from increasing volumes of software reuse:

14

Table5: Quality Gains from Software Reuse

 (Assumes 1,000 function points and 53,300 LOC)

 Reuse Defects per Defect Defect Delivered

Percent Function Potential Removal Defects

Point

Efficiency

0.00% 5.00 1,000 90.00%

100

10.00% 4.50 900 91.00%

81

20.00% 4.00 800 92.00%

64

30.00% 3.50 700 93.00%

49

40.00% 3.00 600 94.00%

36

50.00% 2.50 500 95.00%

25

60.00% 2.00 400 96.00%

16

70.00% 1.50 300 97.00%

9

80.00% 1.00 200 98.00%

4

90.00% 0.50 100 99.00%

1

100.00% - 1 99.99%

0

Since the current maximum for software reuse from certified components is only in the

range of 15% or a bit higher, it can be seen that there is a large potential for future

improvement.

Note that uncertified reuse in the form of mashups or extracting materials from legacy

applications may top 50%. However uncertified reusable materials often have latent

bugs, security flaws, and even error-prone modules so this not a very safe practices. In

several cases the reused material was so buggy it had to be discarded and replaced by

custom development.

Several emerging development methodologies such as “mashups” are pushing reuse

values up above 90%. However the numbers and kinds of applications built from these

emerging methods are small. Reuse needs to become generally available with catalogs of

standard reusable components organized by industries: i.e. banking, insurance,

telecommunications, firmware, etc.

15

Software Methodologies

Unfortunately selecting a methodology is more like joining a cult than making an

informed technical decision. Most companies don’t actually perform any kind of due

diligence on methodologies and merely select the one that is most popular.

In today’s world agile is definitely the most popular. Fortunately agile is also a pretty

good methodology and much superior to the older waterfall method. However there are

some caveats about methodologies.

Agile has been successful primarily for smaller applications < 1,000 function points in

size. It has also been successful for internal applications where users can participate or

be “embedded” with the development team to work our requirements issues.

Agile has not scaled up well to large systems > 10,000 function points. Agile has also

not been visibly successful for commercial or embedded applications where there are

millions of users and none of them work for the company building the software so their

requirements have to be collected using focus groups or special marketing studies.

A variant of agile that uses “pair programming” or two programmers working in the same

cubical with one coding and the other “navigating” has become popular. However it is

very expensive since two people are being paid to do the work of one person. There are

claims that quality is improved, but formal inspections combined with static analysis

achieve much higher quality for much lower costs.

Another agile variation, extreme programming, in which test cases are created before the

code itself is written has proven to be fairly successful for both quality and productivity,

compared to traditional waterfall methods. However both TSP and RUP are just as good

and even better for large systems. Another successful variation on agile is Disciplined

agile development (DAD) which expands the agile concept up above 5,000 function

points.

There are more than 80 available methodologies circa 2016 and many are good; some are

better than agile for large systems; some older methods such as waterfall and cowboy

development are at the bottom of the effectiveness list and should be avoided on modern

applications.

For major applications in the 10,000 function point size range and above the team

software process (TSP) and the Rational unified process (RUP) have the best track

records for successful projects and among the fewest failures. Table 5 ranks 50 current

software development methodologies. The rankings show their effectiveness for small

projects below 1,000 function points and for large systems above 10,000 function points.

Table 1 is based on data from around 600 companies and 25,000 project results:

16

Table 5: Methodology Rankings for Small and Large Software Projects

Small Projects

Large Systems

< 1000 function points

> 10,000 function points

 1 Agile scrum

TSP/PSP

 2 Crystal

Reuse-Oriented

 3 DSDM

Pattern-based

 4 Feature driven (FDD)

IntegraNova

 5 Hybrid

Product Line engineering

 6 IntegraNova

Model-driven

 7 Lean

DevOps

 8 Mashup

Service-Oriented

 9 Microsoft solutions

Specifications by Example

 10 Model-driven

Mashup

 11 Object-Oriented

Object-oriented

 12 Pattern-based

Information engineering (IE)

13 Product Line engineering

Feature driven (FDD)

 14 PSP

Microsoft solutions

 15 Reuse-oriented

Structured development

 16 Service-Oriented modeling

Spiral development

 17 Specifications by Example

T-VEC

 18 Structured development

Kaizen

 19 Test-driven development (TDD) RUP

 20 CASE

Crystal

 21 Clean room

DSDM

 22 Continuous development

Hybrid

 23 DevOps

CASE

 24 EVO

Global 24 hour

 25 Information engineering (IE)

Continuous development

 26 Legacy redevelopment

Legacy redevelopment

 27 Legacy renovation

Legacy renovation

 28 Merise

Merise

 29 Open-source

Iterative

 30 Spiral development

Legacy data mining

 31 T-VEC

Custom by client

 32 Kaizen

CMMI 3

 33 Pair programming

Agile scrum

 34 Reengineering

Lean

 35 Reverse engineering

EVO

 36 XP

Open-source

 37 Iterative

Reengineering

17

38 Legacy data mining

V-Model

 39 Prototypes - evolutionary

Clean room

 40 RAD

Reverse engineering

 41 RUP

Prototypes - evolutionary

 42 TSP/PSP

RAD

 43 V-Model

Prince 2

 44 Cowboy

Prototypes - disposable

 45 Prince 2

Test-driven development (TDD)

 46 Waterfall

Waterfall

 47 Global 24 hour

Pair programming

 48 CMMI 3

XP

 49 Prototypes - disposable

Cowboy

 50 Anti patterns

Anti patterns

The green color highlights the methods with the most successful project outcomes. In

general the large-system methods are “quality strong” methodologies that support

inspections and rigorous quality control. Some of these are a bit “heavy” for small

projects although quality results are good. However the overhead of some rigorous

methods tends to slow down small projects.

Starting in 2014 and expanding fairly rapidly is the new “software engineering methods

and theory” or SEMAT approach. This is not a “methodology” per se but new way of

analyzing software engineering projects and applications themselves.

SEMAT has little or no empirical data as this article is written but the approach seems to

have merit. The probable impact, although this is not yet proven, will be a reduction in

software defect potentials and perhaps an increase in certified reusable components.

Unfortunately SEMAT seems to be aimed at custom designs and manual development of

software, both of which are intrinsically expensive and error-prone. SEMAT would be

better used for increasing the supply of certified reusable components. As SEMAT usage

expands it will be interesting to measure actual results, which to date are purely

theoretical.

Quantifying Software Excellence

Because the software industry has a poor track record for measurement, it is useful to

show what “excellence” means in quantified terms.

Excellence in software quality combines defect potentials of no more than 2.50 bugs

per function point combined with defect removal efficiency (DRE) of 99.00%. This

means that delivered defects will not exceed 0.025 defects per function point.

By contrast current average values circa 2016 are about 3.00 to 5.00 bugs per function

point for defect potentials and only 90% to 94% DRE, leading to as many as 0.50 bugs

18

per function point at delivery. There are projects that top 99.00% percent but the

distribution is less than 5% of U.S. projects top 99% in DRE as of 2016.

Poor projects which are likely to fail and end up in court for poor quality or breach of

contract often have defect potentials of > 6.00 per function point combined with DRE

levels < 85%. Some poor projects deliver > 0.75 bugs per function point and also

excessive security flaws.

Excellence in software productivity and development schedules are not fixed values but

varies with the size of the applications. Table 6 shows two “flavors” of productivity

excellence: 1) the best that can be accomplished with 10% reuse and 2) the best that

can be accomplished with 50% reuse:

Table 6: Excellent Productivity with Varying Quantities of Certified Reuse

Schedule Staffing Effort FP per

Months

Months Month

With < 10% certified reuse

 100 function points 4.79 1.25 5.98 16.71

1,000 function points 13.80 6.25 86.27 11.59

10,000 function points 33.11 57.14 1,892.18 5.28

100,000 function points 70.79 540.54 38,267.34 2.61

 With 50% certified reuse

 100 function points 3.98 1.00 3.98 25.12

1,000 function points 8.51 5.88 50.07 19.97

10,000 function points 20.89 51.28 1,071.43 9.33

100,000 function points 44.67 487.80 21,789.44 4.59

As can be seen from table 6, software reuse is the most important technology for

improving software productivity and quality by really significant amounts. Methods,

tools, CMMI levels, SEMAT, and other minor factors are certainly beneficial. However

so long as software applications are custom designed and hand coded software will

remain an expensive craft and not a true professional occupation.

19

The Metaphor of Technical Debt

Ward Cunningham’s interesting metaphor of “technical debt” has become a popular topic

in the software industry. The concept of technical debt is that in order to get software

released in a hurry, short cuts and omissions occur that will need to repaired after release,

for much greater cost; i.e. like interest builds up on a loan.

Although the metaphor has merit, it is not yet standardized and therefore can vary widely.

In fact a common question at conferences is “what do you include in technical debt?”

Technical debt is not a part of standard costs of quality. There are some other topics that

are excluded also. The most important and also the least studied are “consequential

damages” or actual financial harm to clients of buggy software. These show up in

lawsuits against vendors and are known to attorneys and expert witnesses, but otherwise

not widely published.

A major omission from technical debt circa 2016 is the cost of cyber-attacks and recovery

from cyber-attacks. In cases where valuable data are stolen cyber-attack costs can be

more expensive than total development costs for the attacked application.

Another omission from both cost of quality and technical are the costs of litigation and

damage awards when software vendors or outsourcers are sued for poor quality. The

final table in this report puts all of these costs together to show the full set of costs that

might occur for excellent quality, average quality, and poor quality. Note that table 7

uses “defects per function point” for the quality results:

Table 7: Technical Debt and Software Quality for 1,000 function points

High Average Poor

Quality Quality Quality

 Defect potential 2 4 6

 Removal efficiency 99.00% 92.00% 80.00%

 Delivered defects 0.02 0.32 1.2

 Post-release defect repair $ $5,000 $60,000 $185,000

 Technical debt problems 1 25 75

 Technical debt costs $1,000 $62,500 $375,000

 Excluded from technical debt

20

Consequential damages $0.00 $281,250 $2,437,500

 Cyber-attack costs $0.00 $250,000 $5,000,000

 Litigation costs $0.00 $2,500,000 $3,500,000

 Total Costs of Quality (COQ) $6,000 $3,153,750 $11,497,500

As of early 2016 almost 85% of the true costs of poor quality software are invisible and

not covered by either technical debt or standard “cost of quality” (COQ). No one has yet

done a solid study of the damages of poor quality to clients and users but these costs are

much greater than internal costs.

(This is a topic that should be addressed by both the CMMI and the SEMAT approach,

although neither has studied consequential damages.)

No data has yet been published on the high costs of litigation for poor quality and project

failures, or even the frequency of such litigation.

(The author has been an expert witness in 15 cases for project failure or poor quality, and

therefore has better data than most on litigation frequencies and costs. Also the author’s

SRM tool has a standard feature that predicts probable litigation costs for both the

plaintiff and defendant in breach of contract litigation.)

Table 7 illustrates two important but poorly understood facts about software quality

economics:

1) High quality software is faster and cheaper to build than poor quality software;

maintenance costs are many times cheaper; and technical debt is many times

cheaper.

2) Poor quality software is slower and more expensive to build than high quality

software; maintenance costs are many times more expensive; and technical debt

is many times more expensive.

Companies that skimp on quality because they need to deliver software in a hurry don’t

realize that they are slowing down software schedules; not speeding them up.

High quality also causes little or no consequential damages to clients, and the odds of

being sued are below 1%, as opposed to about 15% for poor quality software built by

outsource vendors. Incidentally state governments seem to have more litigation for

failing projects and poor quality than any other industry sector.

High quality projects are also less likely to experience cyber-attacks because many of

these attacks are due to latent security flaws in deployed software. These flaws might

have been eliminated prior to deployment if security inspections and security testing plus

21

static analysis had been used.

For software projects, high quality is more than free; it is one of the best investments

companies can make. High quality has a large and positive return on investment (ROI).

Poor quality software projects have huge risks of failure, delayed schedules, major cost

overruns, and more than double the cost per function point compared to high quality.

Stages in Achieving Software Excellence

Readers are probably curious about the sequence of steps needed to move from “average”

to “excellent” in software quality. They are also curious about the costs and schedules

needed to achieve excellence. Following are short discussions of the sequence and costs

needed for a company with about 1,000 software personnel to move from average to

excellent results.

Stage 1: Quantify your current software results

In order to plan improvements rationally all companies should know their current status

using effective quantified data points. This means that every company should measure

and know these topics:

1. Defect potentials

2. Defect severity levels

3. Defects per function point

4. Defect detection efficiency (DDE)

5. Defect removal efficiency (DRE)

6. Cyclomatic complexity of all applications

7. Error-prone modules (EPM) in deployed software

8. Test coverage of all applications

9. Test cases and test scripts per function point

10. Duplicate or incorrect test cases in test libraries

11. Bad-fix injection rates (bugs in defect repairs)

12. The existence or absence of error-prone modules in operational software

13. Customer satisfaction with existing software

14. Defect repair turnaround

15. Technical debt for deployed software

16. Cost of quality (COQ)

17. Security flaws found before release and then after deployment

18. Current set of defect prevention, pre-test, and test quality methods in use

19. The set of software development methodologies in use for all projects

20. Amount of reusable materials utilized for software projects

For a company with 1,000 software personnel and a portfolio of perhaps 3,000 software

applications this first stage can take from two to three calendar months. The effort would

probably be in the range of 15 to 25 internal staff months, plus the use of external quality

consultants during the fact-finding stage.

22

The most likely results will be the discovery that defect potentials top 3.5 per function

point and defect removal efficiency (DRE) is below 92%. Other likely findings will

include < 80% test coverage and cyclomatic complexity that might > 50 for key modules.

Probably a dozen or more error-prone modules will be discovered. Quantitative goals

for every software company should be to have defect potentials < 2.5 per function point

combined with DRE levels > 97% for every software project, and above 99% for

mission-critical software projects. Software reuse will probably be < 15% and mainly be

code modules that are picked up informally from other applications.

The analogy for this stage would be like going to a medical clinic for a thorough annual

medical check-up. The check-up does not cure any medical problems by itself, but it

identifies the problems that physicians will need to cure, if any exist.

Once the current quality results have been measured and quantified, it is then possible to

plan rational improvement strategies that will reduce defect potentials and raise defect

removal efficiency to approximate 99% levels.

Stage 2: Begin to Adopt State of the Art Quality Tools and Methods

Software excellence requires more than just adopting a new method such as agile and

assuming everything will get better. Software excellence is the result of a web of related

methods and tools that are synergistic.

The second stage, which occurs as the first stage is ending, and perhaps overlaps the last

month, is to acquire and start to use proven methods for defect prevention, pre-test defect

removal, and formal testing.

This stage can vary by the nature and size of the software produced. Real-time and

embedded applications will use different tools and methods compared to web and

information technology applications. Large systems will use different methods than

small applications. However a nucleus of common techniques is used for all software.

These include the following:

Formal Sizing, Estimating, and Tracking

1) Use parametric estimation tools on projects > 250 function points

2) Carry out formal risk analysis before starting

3) Use formal tracking of progress, quality, and costs

Defect prevention

1. Joint application design (JAD)

2. Quality function deployment (QFD)

3. Requirements models

4. Formal reuse programs

5. Formal defect measurements

6. Data mining of legacy applications for lost requirements

23

7. Training and certification of quality personnel

8. Acquisition of defect measurements tools and methods

9. Formal methodology analysis and selection for key projects

10. Formal quality and defect estimation before projects start

Pre-test defect removal

1. Static analysis of all legacy applications

2. Static analysis of all new applications

3. Static analysis of all changes to applications

4. Inspections of key deliverables for key projects (requirements, design, code, etc.)

5. Automated proofs of correctness for critical features

Test defect removal

1. Formal test case design, often using design of experiments or cause-effect graphs

2. Acquisition of test coverage tools

3. Acquisition of cyclomatic complexity tools

4. Review of test libraries for duplicate or defective test cases

5. Formal training of test personnel

6. Certification of test personnel

7. Planning optimal test sequences for every key project

8. Measuring test coverage for all projects

9. Measuring cylomatic complexity for all code

10. Formal test and quality measures of all projects

This second stage normally lasts about a year and includes formal training of managers,

development personnel, quality assurance personnel, test personnel, and other software

occupation groups.

Because there is a natural tendency to resist changes, the best way of moving forward is

to treat the new tools and methods as experiments. In other words, instead of directing

that certain methods such as inspections be used, treat them as experiments and make it

clear that if the inspections don’t seem useful after trying them out, the teams will not be

forced to continue with them. This is how IBM introduced inspections in the 1970’s, and

the results were so useful that inspections became a standard method without any

management directives.

This second stage will take about a year for a company with 1,000 software personnel,

and more or less time for larger or smaller organizations. Probably all technical

personnel will receive at least a week of training, and so will project managers.

Probably the costs during this phase due to training and learning curves can top $1,000

per staff member. Some costs will be training; others will be acquisitions of tools. It is

difficult to establish a precise cost for tools due to the availability of a large number of

open-source tools that have no costs.

Improvements in quality will start to occur immediately during stage 2. However due to

24

learning curves, productivity will drop down slightly for the first 4 months due to having

formal training for key personnel. But by the end of a year, productivity may be 15%

higher than when the year started. Defect potentials will probably drop by 20% and

defect removal efficiency (DRE) should go up by > 7% from the starting point, and top

95% for every project.

Stage 3: Continuous Improvements Forever

Because stages 1 and 2 introduce major improvements, some interesting sociological

phenomena tend to occur. One thing that may occur is that the technical and

management leaders of stages 1 and 2 are very likely to get job offers from competitive

companies or from other divisions in large corporations.

It sometimes happens that if the stage 1 and 2 leaders are promoted or change jobs, their

replacements may not recognize the value of the new tools and methods. For example

many companies that use inspections and static analysis find that defects are much

reduced compared to previous years.

When quality improves significantly unwise managers may say, “why keep using

inspections and static analysis when they are not finding many bugs?” Of course if the

inspections and static analysis stop, the bug counts will soon start to climb back up to

previous levels and DRE will drop down to previous levels.

In order to keep moving ahead and staying at the top, formal training and formal

measurements are both needed. Annual training is needed, and also formal training of

new personnel and new managers. Companies that provide 5 or more days of training for

software personnel have higher annual productivity than companies with zero days of

training.

When the ITT Corporation began a successful 4-year improvement program, one of the

things that was part of their success was an annual report for corporate executives. This

report was produced on the same schedule as the annual corporate financial report to

shareholders; i.e. in the first quarter of the next fiscal year.

The ITT annual reports showed accomplishments for the prior year; comparisons to

earlier years; and projected accomplishments for the following year. Some of the

contents of the annual reports included:

1. Software personnel by division

2. Software personnel by occupation groups

3. Year-by-year cost of quality (COQ)

4. Total costs of software ownership (TCO)

5. Changes in software personnel by year for three years

6. Average and ranges of defect potentials

7. Average and ranges of defect removal efficiency (DRE)

8. Three-year running averages of defect potentials and DRE

25

9. Customer satisfaction year by year

10. Plans for the next fiscal year for staffing, costs, quality, etc.

ITT was a large corporation with over 10,000 software personnel located in a number of

countries and more than 25 software development labs. As a result the overall corporate

software report was a fairly large document of about 50 pages in size.

For a smaller company with a staffing of about 1,000 personnel, the annual report would

probably be in the 20-page size range.

Once software is up to speed and combines high quality and high productivity, that opens

up interesting business questions about the best use of the savings. For example ITT

software personnel had been growing at more than 5% per year for many years. Once

quality and productivity improved, it was clear that personnel growth was no longer

needed. In fact the quality and productivity were so good after a few years that perhaps

9,000 instead of 10,000 could build and maintain all needed software.

Some of the topics that need to be considered when quality and productivity improve are

related to what is the best use of resources no longer devoted to fixing bugs. Some of the

possible uses include:

 Reduce corporate backlogs to zero by tackling more projects per year.

 Move into new kinds of applications using newly available personnel no longer

locked into bug repairs.

 Allow natural attrition to lower overall staffing down to match future needs.

For commercial software companies expanding into new kinds of software and tackling

more projects per year are the best use of available personnel that will be freed up when

quality improves.

For government software or for companies that are not expanding their businesses, then

probably allowing natural attrition to reduce staffing might be considered. For large

organizations, transfers to other business units might occur.

One thing that would a sociological disaster would be to have layoffs due to the use of

improved technologies that reduced staffing needs. In this case resistance to changes

and improvements would become a stone wall and progress would stop cold.

Since most companies have large backlogs of applications that are awaiting development,

and since most leading companies have needs to expand software into new areas, the best

overall result would be to use the available personnel for expansion

Stage three will run for many years. The overall costs per function point should be about

30% lower than before the improvement program started. Overall schedules should be

26

about 25% shorter than before the improvement program started.

Defect potentials will be about 35% lower than when the improvement program started

and corporate defect removal efficiency should top 97% for all projects and 99% for

mission critical projects.

Going Beyond Stage 3 into Formal Reuse Programs

As mentioned previously in this report, custom designs and manual coding are

intrinsically expensive and error-prone no matter what methodologies are used and what

programming languages are used.

For companies that need peak performance, moving into a full and formal software reuse

program can achieve results even better than Stage 3.

Summary and Conclusions

Because software is the driving force of both industry and government operations, it

needs to be improved in terms of both quality and productivity. The most powerful

technology for making really large improvements in both quality and productivity will be

from eliminating costly custom designs and labor-intensive hand coding, and moving

towards manufacturing software applications from libraries of well-formed standard

reusable components that approach zero-defect quality levels.

Today’s best combinations of methods, tools, and programming languages are certainly

superior to waterfall or cowboy development using unstructured methods and low-level

languages. But even the best current methods still involve error-prone custom designs

and labor-intensive manual coding.

27

REFERENCES AND READINGS

Abran, A. and Robillard, P.N.; “Function Point Analysis, An Empirical Study of its

Measurement Processes”; IEEE Transactions on Software Engineering, Vol 22, No.

12; Dec. 1996; pp. 895-909.

Austin, Robert d:; Measuring and Managing Performance in Organizations; Dorset House

Press, New York, NY; 1996; ISBN 0-932633-36-6; 216 pages.

Black, Rex; Managing the Testing Process: Practical Tools and Techniques for Managing

Hardware and Software Testing; Wiley; 2009; ISBN-10 0470404159; 672 pages.

Bogan, Christopher E. and English, Michael J.; Benchmarking for Best Practices;

McGraw Hill, New York, NY; ISBN 0-07-006375-3; 1994; 312 pages.

Brown, Norm (Editor); The Program Manager’s Guide to Software Acquisition Best

Practices; Version 1.0; July 1995; U.S. Department of Defense, Washington, DC;

142 pages.

Cohen, Lou; Quality Function Deployment – How to Make QFD Work for You; Prentice

Hall, Upper Saddle River, NJ; 1995; ISBN 10: 0201633302; 368 pages.

Crosby, Philip B.; Quality is Free; New American Library, Mentor Books, New York,

NY; 1979; 270 pages.

Curtis, Bill, Hefley, William E., and Miller, Sally; People Capability Maturity Model;

Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA; 1995.

Department of the Air Force; Guidelines for Successful Acquisition and Management of

Software Intensive Systems; Volumes 1 and 2; Software Technology Support Center,

Hill Air Force Base, UT; 1994.

Dreger, Brian; Function Point Analysis; Prentice Hall, Englewood Cliffs, NJ; 1989; ISBN

0-13-332321-8; 185 pages.

Gack, Gary; Managing the Black Hole: The Executives Guide to Software Project Risk;

Business Expert Publishing, Thomson, GA; 2010; ISBN10: 1-935602-01-9.

Gack, Gary; Applying Six Sigma to Software Implementation Projects;

http://software.isixsigma.com/library/content/c040915b.asp.

Gilb, Tom and Graham, Dorothy; Software Inspections; Addison Wesley, Reading, MA;

1993; ISBN 10: 0201631814.

Grady, Robert B.; Practical Software Metrics for Project Management and Process

Improvement; Prentice Hall, Englewood Cliffs, NJ; ISBN 0-13-720384-5; 1992; 270

http://software.isixsigma.com/library/content/c040915b.asp

28

pages.

Grady, Robert B. & Caswell, Deborah L.; Software Metrics: Establishing a Company-

Wide Program; Prentice Hall, Englewood Cliffs, NJ; ISBN 0-13-821844-7; 1987;

288 pages.

Grady, Robert B.; Successful Process Improvement; Prentice Hall PTR, Upper Saddle

River, NJ; ISBN 0-13-626623-1; 1997; 314 pages.

Humphrey, Watts S.; Managing the Software Process; Addison Wesley Longman,

Reading, MA; 1989.

IFPUG Counting Practices Manual, Release 4, International Function Point Users Group,

Westerville, OH; April 1995; 83 pages.

Jacobsen, Ivar, Griss, Martin, and Jonsson, Patrick; Software Reuse - Architecture,

Process, and Organization for Business Success; Addison Wesley Longman,

Reading, MA; ISBN 0-201-92476-5; 1997; 500 pages.

Jacobsen, Ivar et al; The Essence of Software Engineering; Applying the SEMAT

Kernel; Addison Wesley Professional, 2013.

Jones, Capers; The Technical and Social History of Software Engineering, Addison

Wesley, 2014.

Jones, Capers and Bonsignour, Olivier; The Economics of Software Quality, Addison

Wesley Longman, Reading, MA; 2011.

Jones, Capers; Estimating Software Costs; 2nd edition; McGraw Hill; New York, NY;

2007.

Jones, Capers; Software Engineering Best Practices; McGraw Hill, New York, NY; 2010.

Jones, Capers and Bonsignour, Olivier; The Economics of Software Quality;

 Addison Wesley, Boston, MA; 2011; ISBN 978-0-13-258220-9; 587 pages.

Jones, Capers; “A Ten-Year Retrospective of the ITT Programming Technology Center”;

Software Productivity Research, Burlington, MA; 1988.

Jones, Capers; Applied Software Measurement; McGraw Hill, 3rd edition 2008.

Jones, Capers; Software Engineering Best Practices; McGraw Hill, 1st edition 2010.

Jones, Capers; Assessment and Control of Software Risks; Prentice Hall, 1994; ISBN 0-

13-741406-4; 711 pages.

29

Jones, Capers; Patterns of Software System Failure and Success; International Thomson

Computer Press, Boston, MA; December 1995; 250 pages; ISBN 1-850-32804-8;

292 pages.

Jones, Capers; Software Assessments, Benchmarks, and Best Practices; Addison Wesley

Longman, Boston, MA; 2000 (due in May of 2000); 600 pages.

Jones, Capers; Software Quality – Analysis and Guidelines for Success; International

Thomson Computer Press, Boston, MA; ISBN 1-85032-876-6; 1997; 492 pages.

Jones, Capers; The Economics of Object-Oriented Software; Software Productivity

Research, Burlington, MA; April 1997; 22 pages.

Jones, Capers; Becoming Best in Class; Software Productivity Research, Burlington,

MA; January 1998; 40 pages.

Kan, Stephen H.; Metrics and Models in Software Quality Engineering; 2nd edition;

Addison Wesley Longman, Boston, MA; ISBN 0-201-72915-6; 2003; 528 pages.

Keys, Jessica; Software Engineering Productivity Handbook; McGraw Hill, New York,

NY; ISBN 0-07-911366-4; 1993; 651 pages.

Love, Tom; Object Lessons; SIGS Books, New York; ISBN 0-9627477 3-4; 1993; 266

pages.

McCabe, Thomas J.; “A Complexity Measure”; IEEE Transactions on Software

Engineering; December 1976; pp. 308-320.

McMahon, Paul; 15 Fundamentals for Higher Performance in Software Development;

PEM Systems 2014.

Melton, Austin; Software Measurement; International Thomson Press, London, UK;

ISBN 1-85032-7178-7; 1995.

Multiple authors; Rethinking the Software Process; (CD-ROM); Miller Freeman,

Lawrence, KS; 1996. (This is a new CD ROM book collection jointly produced by

the book publisher, Prentice Hall, and the journal publisher, Miller Freeman. This

CD ROM disk contains the full text and illustrations of five Prentice Hall books:

Assessment and Control of Software Risks by Capers Jones; Controlling Software

Projects by Tom DeMarco; Function Point Analysis by Brian Dreger; Measures for

Excellence by Larry Putnam and Ware Myers; and Object-Oriented Software

Metrics by Mark Lorenz and Jeff Kidd.)

Paulk Mark et al; The Capability Maturity Model; Guidelines for Improving the

Software Process; Addison Wesley, Reading, MA; ISBN 0-201-54664-7; 1995; 439

pages.

30

Perry, William E.; Data Processing Budgets - How to Develop and Use Budgets

Effectively; Prentice Hall, Englewood Cliffs, NJ; ISBN 0-13-196874-2; 1985; 224

pages.

Perry, William E.; Handbook of Diagnosing and Solving Computer Problems; TAB

Books, Inc.; Blue Ridge Summit, PA; 1989; ISBN 0-8306-9233-9; 255 pages.

Putnam, Lawrence H.; Measures for Excellence -- Reliable Software On Time, Within

Budget; Yourdon Press - Prentice Hall, Englewood Cliffs, NJ; ISBN 0-13-567694-0;

1992; 336 pages.

Putnam, Lawrence H and Myers, Ware.; Industrial Strength Software - Effective

Management Using Measurement; IEEE Press, Los Alamitos, CA; ISBN 0-8186-

7532-2; 1997; 320 pages.

Radice, Ronald A.; High Qualitiy Low Cost Software Inspections; Paradoxicon

Publishingl Andover, MA; ISBN 0-9645913-1-6; 2002; 479 pages.

Royce, Walker E.; Software Project Management: A Unified Framework; Addison

Wesley Longman, Reading, MA; 1998; ISBN 0-201-30958-0.

Rubin, Howard; Software Benchmark Studies For 1997; Howard Rubin Associates,

Pound Ridge, NY; 1997.

Rubin, Howard (Editor); The Software Personnel Shortage; Rubin Systems, Inc.; Pound

Ridge, NY; 1998.

Shepperd, M.: “A Critique of Cyclomatic Complexity as a Software Metric”; Software

Engineering Journal, Vol. 3, 1988; pp. 30-36.

Strassmann, Paul; The Squandered Computer; The Information Economics Press, New

Canaan, CT; ISBN 0-9620413-1-9; 1997; 426 pages.

Stukes, Sherry, Deshoretz, Jason, Apgar, Henry and Macias, Ilona; Air Force Cost

Analysis Agency Software Estimating Model Analysis ; TR-9545/008-2; Contract

F04701-95-D-0003, Task 008; Management Consulting & Research, Inc.; Thousand

Oaks, CA 91362; September 30 1996.

Symons, Charles R.; Software Sizing and Estimating – Mk II FPA (Function Point

Analysis); John Wiley & Sons, Chichester; ISBN 0 471-92985-9; 1991; 200 pages.

Thayer, Richard H. (editor); Software Engineering and Project Management; IEEE Press,

Los Alamitos, CA; ISBN 0 8186-075107; 1988; 512 pages.

Umbaugh, Robert E. (Editor); Handbook of IS Management; (Fourth Edition); Auerbach

31

Publications, Boston, MA; ISBN 0-7913-2159-2; 1995; 703 pages.

Weinberg, Dr. Gerald; Quality Software Management - Volume 2 First-Order

Measurement; Dorset House Press, New York, NY; ISBN 0-932633-24-2; 1993; 360

pages.

Wiegers, Karl A; Creating a Software Engineering Culture; Dorset House Press, New

York, NY; 1996; ISBN 0-932633-33-1; 358 pages.

Yourdon, Ed; Death March - The Complete Software Developer’s Guide to Surviving

“Mission Impossible” Projects; Prentice Hall PTR, Upper Saddle River, NJ; ISBN 0-

13-748310-4; 1997; 218 pages.

Zells, Lois; Managing Software Projects - Selecting and Using PC-Based Project

Management Systems; QED Information Sciences, Wellesley, MA; ISBN 0-89435-

275-X; 1990; 487 pages.

Zvegintzov, Nicholas; Software Management Technology Reference Guide; Dorset

House Press, New York, NY; 1994; ISBN 1-884521-01-0; 240 pages.

